Logo Search packages:      
Sourcecode: wxwindows2.4 version File versions

tif_getimage.c

/* $Header: /pack/cvsroots/wxwindows/wxWindows/src/tiff/tif_getimage.c,v 1.2.6.1 2002/11/10 13:13:56 JS Exp $ */

/*
 * Copyright (c) 1991-1997 Sam Leffler
 * Copyright (c) 1991-1997 Silicon Graphics, Inc.
 *
 * Permission to use, copy, modify, distribute, and sell this software and
 * its documentation for any purpose is hereby granted without fee, provided
 * that (i) the above copyright notices and this permission notice appear in
 * all copies of the software and related documentation, and (ii) the names of
 * Sam Leffler and Silicon Graphics may not be used in any advertising or
 * publicity relating to the software without the specific, prior written
 * permission of Sam Leffler and Silicon Graphics.
 *
 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
 *
 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 * OF THIS SOFTWARE.
 */

/*
 * TIFF Library
 *
 * Read and return a packed RGBA image.
 */
#include "tiffiop.h"
#include <assert.h>
#include <stdio.h>

static      int LINKAGEMODE gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
static      int LINKAGEMODE gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
static      int LINKAGEMODE gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
static      int LINKAGEMODE gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
static      int LINKAGEMODE pickTileContigCase(TIFFRGBAImage*);
static      int LINKAGEMODE pickTileSeparateCase(TIFFRGBAImage*);

static      const char photoTag[] = "PhotometricInterpretation";

/*
 * Check the image to see if TIFFReadRGBAImage can deal with it.
 * 1/0 is returned according to whether or not the image can
 * be handled.  If 0 is returned, emsg contains the reason
 * why it is being rejected.
 */
int
TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
{
    TIFFDirectory* td = &tif->tif_dir;
    uint16 photometric;
    int colorchannels;

    switch (td->td_bitspersample) {
    case 1: case 2: case 4:
    case 8: case 16:
      break;
    default:
      sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
          td->td_bitspersample);
      return (0);
    }
    colorchannels = td->td_samplesperpixel - td->td_extrasamples;
    if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
      switch (colorchannels) {
      case 1:
          photometric = PHOTOMETRIC_MINISBLACK;
          break;
      case 3:
          photometric = PHOTOMETRIC_RGB;
          break;
      default:
          sprintf(emsg, "Missing needed %s tag", photoTag);
          return (0);
      }
    }
    switch (photometric) {
    case PHOTOMETRIC_MINISWHITE:
    case PHOTOMETRIC_MINISBLACK:
    case PHOTOMETRIC_PALETTE:
      if (td->td_planarconfig == PLANARCONFIG_CONTIG && td->td_samplesperpixel != 1) {
          sprintf(emsg,
            "Sorry, can not handle contiguous data with %s=%d, and %s=%d",
            photoTag, photometric,
            "Samples/pixel", td->td_samplesperpixel);
          return (0);
      }
      break;
    case PHOTOMETRIC_YCBCR:
      if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
          sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d",
            "Planarconfiguration", td->td_planarconfig);
          return (0);
      }
      break;
    case PHOTOMETRIC_RGB:
      if (colorchannels < 3) {
          sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
            "Color channels", colorchannels);
          return (0);
      }
      break;
#ifdef CMYK_SUPPORT
    case PHOTOMETRIC_SEPARATED:
      if (td->td_inkset != INKSET_CMYK) {
          sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
            "InkSet", td->td_inkset);
          return (0);
      }
      if (td->td_samplesperpixel != 4) {
          sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
            "Samples/pixel", td->td_samplesperpixel);
          return (0);
      }
      break;
#endif
    case PHOTOMETRIC_LOGL:
      if (td->td_compression != COMPRESSION_SGILOG) {
          sprintf(emsg, "Sorry, LogL data must have %s=%d",
            "Compression", COMPRESSION_SGILOG);
          return (0);
      }
      break;
    case PHOTOMETRIC_LOGLUV:
      if (td->td_compression != COMPRESSION_SGILOG &&
            td->td_compression != COMPRESSION_SGILOG24) {
          sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
            "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
          return (0);
      }
      if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
          sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
            "Planarconfiguration", td->td_planarconfig);
          return (0);
      }
      break;
    default:
      sprintf(emsg, "Sorry, can not handle image with %s=%d",
          photoTag, photometric);
      return (0);
    }
    return (1);
}

void
TIFFRGBAImageEnd(TIFFRGBAImage* img)
{
    if (img->Map)
      _TIFFfree(img->Map), img->Map = NULL;
    if (img->BWmap)
      _TIFFfree(img->BWmap), img->BWmap = NULL;
    if (img->PALmap)
      _TIFFfree(img->PALmap), img->PALmap = NULL;
    if (img->ycbcr)
      _TIFFfree(img->ycbcr), img->ycbcr = NULL;

    if( img->redcmap ) {
        _TIFFfree( img->redcmap );
        _TIFFfree( img->greencmap );
        _TIFFfree( img->bluecmap );
    }
}

static int
isCCITTCompression(TIFF* tif)
{
    uint16 compress;
    TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
    return (compress == COMPRESSION_CCITTFAX3 ||
          compress == COMPRESSION_CCITTFAX4 ||
          compress == COMPRESSION_CCITTRLE ||
          compress == COMPRESSION_CCITTRLEW);
}

int
TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
{
    uint16* sampleinfo;
    uint16 extrasamples;
    uint16 planarconfig;
    uint16 compress;
    int colorchannels;
    uint16  *red_orig, *green_orig, *blue_orig;
    int           n_color;

    /* Initialize to normal values */
    img->row_offset = 0;
    img->col_offset = 0;
    img->redcmap = NULL;
    img->greencmap = NULL;
    img->bluecmap = NULL;

    img->tif = tif;
    img->stoponerr = stop;
    TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
    switch (img->bitspersample) {
    case 1: case 2: case 4:
    case 8: case 16:
      break;
    default:
      sprintf(emsg, "Sorry, can not image with %d-bit samples",
          img->bitspersample);
      return (0);
    }
    img->alpha = 0;
    TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
    TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
      &extrasamples, &sampleinfo);
    if (extrasamples == 1)
      switch (sampleinfo[0]) {
      case EXTRASAMPLE_ASSOCALPHA:  /* data is pre-multiplied */
      case EXTRASAMPLE_UNASSALPHA:  /* data is not pre-multiplied */
          img->alpha = sampleinfo[0];
          break;
      }
    colorchannels = img->samplesperpixel - extrasamples;
    TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
    TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
    if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
      switch (colorchannels) {
      case 1:
          if (isCCITTCompression(tif))
            img->photometric = PHOTOMETRIC_MINISWHITE;
          else
            img->photometric = PHOTOMETRIC_MINISBLACK;
          break;
      case 3:
          img->photometric = PHOTOMETRIC_RGB;
          break;
      default:
          sprintf(emsg, "Missing needed %s tag", photoTag);
          return (0);
      }
    }
    switch (img->photometric) {
    case PHOTOMETRIC_PALETTE:
      if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
          &red_orig, &green_orig, &blue_orig)) {
          TIFFError(TIFFFileName(tif), "Missing required \"Colormap\" tag");
          return (0);
      }

        /* copy the colormaps so we can modify them */
        n_color = (1L << img->bitspersample);
        img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
        img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
        img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
        if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
          TIFFError(TIFFFileName(tif), "Out of memory for colormap copy");
          return (0);
        }

        memcpy( img->redcmap, red_orig, n_color * 2 );
        memcpy( img->greencmap, green_orig, n_color * 2 );
        memcpy( img->bluecmap, blue_orig, n_color * 2 );

      /* fall thru... */
    case PHOTOMETRIC_MINISWHITE:
    case PHOTOMETRIC_MINISBLACK:
      if (planarconfig == PLANARCONFIG_CONTIG && img->samplesperpixel != 1) {
          sprintf(emsg,
            "Sorry, can not handle contiguous data with %s=%d, and %s=%d",
            photoTag, img->photometric,
            "Samples/pixel", img->samplesperpixel);
          return (0);
      }
      break;
    case PHOTOMETRIC_YCBCR:
      if (planarconfig != PLANARCONFIG_CONTIG) {
          sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d",
            "Planarconfiguration", planarconfig);
          return (0);
      }
      /* It would probably be nice to have a reality check here. */
      if (compress == COMPRESSION_JPEG && planarconfig == PLANARCONFIG_CONTIG) {
          /* can rely on libjpeg to convert to RGB */
          /* XXX should restore current state on exit */
          TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
          img->photometric = PHOTOMETRIC_RGB;
      }
      break;
    case PHOTOMETRIC_RGB:
      if (colorchannels < 3) {
          sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
            "Color channels", colorchannels);
          return (0);
      }
      break;
    case PHOTOMETRIC_SEPARATED: {
      uint16 inkset;
      TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
      if (inkset != INKSET_CMYK) {
          sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
            "InkSet", inkset);
          return (0);
      }
      if (img->samplesperpixel != 4) {
          sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
            "Samples/pixel", img->samplesperpixel);
          return (0);
      }
      break;
    }
    case PHOTOMETRIC_LOGL:
      if (compress != COMPRESSION_SGILOG) {
          sprintf(emsg, "Sorry, LogL data must have %s=%d",
            "Compression", COMPRESSION_SGILOG);
          return (0);
      }
      TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
      img->photometric = PHOTOMETRIC_MINISBLACK;      /* little white lie */
      img->bitspersample = 8;
      break;
    case PHOTOMETRIC_LOGLUV:
      if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
          sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
            "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
          return (0);
      }
      if (planarconfig != PLANARCONFIG_CONTIG) {
          sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
            "Planarconfiguration", planarconfig);
          return (0);
      }
      TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
      img->photometric = PHOTOMETRIC_RGB;       /* little white lie */
      img->bitspersample = 8;
      break;
    default:
      sprintf(emsg, "Sorry, can not handle image with %s=%d",
          photoTag, img->photometric);
      return (0);
    }
    img->Map = NULL;
    img->BWmap = NULL;
    img->PALmap = NULL;
    img->ycbcr = NULL;
    TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
    TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
    TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
    img->isContig =
      !(planarconfig == PLANARCONFIG_SEPARATE && colorchannels > 1);
    if (img->isContig) {
      img->get = TIFFIsTiled(tif) ? gtTileContig : gtStripContig;
      (void) pickTileContigCase(img);
    } else {
      img->get = TIFFIsTiled(tif) ? gtTileSeparate : gtStripSeparate;
      (void) pickTileSeparateCase(img);
    }
    return (1);
}

int
TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
{
    if (img->get == NULL) {
      TIFFError(TIFFFileName(img->tif), "No \"get\" routine setup");
      return (0);
    }
    if (img->put.any == NULL) {
      TIFFError(TIFFFileName(img->tif),
          "No \"put\" routine setupl; probably can not handle image format");
      return (0);
    }
    return (*img->get)(img, raster, w, h);
}

/*
 * Read the specified image into an ABGR-format raster.
 */
int
TIFFReadRGBAImage(TIFF* tif,
    uint32 rwidth, uint32 rheight, uint32* raster, int stop)
{
    char emsg[1024];
    TIFFRGBAImage img;
    int ok;

    if (TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
      /* XXX verify rwidth and rheight against width and height */
      ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
          rwidth, img.height);
      TIFFRGBAImageEnd(&img);
    } else {
      TIFFError(TIFFFileName(tif), emsg);
      ok = 0;
    }
    return (ok);
}

static uint32
setorientation(TIFFRGBAImage* img, uint32 h)
{
    TIFF* tif = img->tif;
    uint32 y;

    switch (img->orientation) {
    case ORIENTATION_BOTRIGHT:
    case ORIENTATION_RIGHTBOT:      /* XXX */
    case ORIENTATION_LEFTBOT: /* XXX */
      TIFFWarning(TIFFFileName(tif), "using bottom-left orientation");
      img->orientation = ORIENTATION_BOTLEFT;
      /* fall thru... */
    case ORIENTATION_BOTLEFT:
      y = 0;
      break;
    case ORIENTATION_TOPRIGHT:
    case ORIENTATION_RIGHTTOP:      /* XXX */
    case ORIENTATION_LEFTTOP: /* XXX */
    default:
      TIFFWarning(TIFFFileName(tif), "using top-left orientation");
      img->orientation = ORIENTATION_TOPLEFT;
      /* fall thru... */
    case ORIENTATION_TOPLEFT:
      y = h-1;
      break;
    }
    return (y);
}

/*
 * Get an tile-organized image that has
 *    PlanarConfiguration contiguous if SamplesPerPixel > 1
 * or
 *    SamplesPerPixel == 1
 */   
static int
gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
{
    TIFF* tif = img->tif;
    tileContigRoutine put = img->put.contig;
    uint16 orientation;
    uint32 col, row, y;
    uint32 tw, th;
    u_char* buf;
    int32 fromskew, toskew;
    uint32 nrow;

    buf = (u_char*) _TIFFmalloc(TIFFTileSize(tif));
    if (buf == 0) {
      TIFFError(TIFFFileName(tif), "No space for tile buffer");
      return (0);
    }
    TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
    TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
    y = setorientation(img, h);
    orientation = img->orientation;
    toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? tw+w : tw-w);
    for (row = 0; row < h; row += th) {
      nrow = (row + th > h ? h - row : th);
      for (col = 0; col < w; col += tw) {
          if (TIFFReadTile(tif, buf, col+img->col_offset,
                             row+img->row_offset, 0, 0) < 0 && img->stoponerr)
            break;
          if (col + tw > w) {
            /*
             * Tile is clipped horizontally.  Calculate
             * visible portion and skewing factors.
             */
            uint32 npix = w - col;
            fromskew = tw - npix;
            (*put)(img, raster+y*w+col, col, y,
                npix, nrow, fromskew, toskew + fromskew, buf);
          } else {
            (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf);
          }
      }
      y += (orientation == ORIENTATION_TOPLEFT ?
          -(int32) nrow : (int32) nrow);
    }
    _TIFFfree(buf);
    return (1);
}

/*
 * Get an tile-organized image that has
 *     SamplesPerPixel > 1
 *     PlanarConfiguration separated
 * We assume that all such images are RGB.
 */   
static int
gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
{
    TIFF* tif = img->tif;
    tileSeparateRoutine put = img->put.separate;
    uint16 orientation;
    uint32 col, row, y;
    uint32 tw, th;
    u_char* buf;
    u_char* r;
    u_char* g;
    u_char* b;
    u_char* a;
    tsize_t tilesize;
    int32 fromskew, toskew;
    int alpha = img->alpha;
    uint32 nrow;

    tilesize = TIFFTileSize(tif);
    buf = (u_char*) _TIFFmalloc(4*tilesize);
    if (buf == 0) {
      TIFFError(TIFFFileName(tif), "No space for tile buffer");
      return (0);
    }
    r = buf;
    g = r + tilesize;
    b = g + tilesize;
    a = b + tilesize;
    if (!alpha)
      memset(a, 0xff, tilesize);
    TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
    TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
    y = setorientation(img, h);
    orientation = img->orientation;
    toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? tw+w : tw-w);
    for (row = 0; row < h; row += th) {
      nrow = (row + th > h ? h - row : th);
      for (col = 0; col < w; col += tw) {
          if (TIFFReadTile(tif, r, col+img->col_offset,
                             row+img->row_offset,0,0) < 0 && img->stoponerr)
            break;
          if (TIFFReadTile(tif, g, col+img->col_offset,
                             row+img->row_offset,0,1) < 0 && img->stoponerr)
            break;
          if (TIFFReadTile(tif, b, col+img->col_offset,
                             row+img->row_offset,0,2) < 0 && img->stoponerr)
            break;
          if (alpha && TIFFReadTile(tif,a,col+img->col_offset,
                               row+img->row_offset,0,3) < 0 && img->stoponerr)
            break;
          if (col + tw > w) {
            /*
             * Tile is clipped horizontally.  Calculate
             * visible portion and skewing factors.
             */
            uint32 npix = w - col;
            fromskew = tw - npix;
            (*put)(img, raster+y*w+col, col, y,
                npix, nrow, fromskew, toskew + fromskew, r, g, b, a);
          } else {
            (*put)(img, raster+y*w+col, col, y,
                tw, nrow, 0, toskew, r, g, b, a);
          }
      }
      y += (orientation == ORIENTATION_TOPLEFT ?
          -(int32) nrow : (int32) nrow);
    }
    _TIFFfree(buf);
    return (1);
}

/*
 * Get a strip-organized image that has
 *    PlanarConfiguration contiguous if SamplesPerPixel > 1
 * or
 *    SamplesPerPixel == 1
 */   
static int
gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
{
    TIFF* tif = img->tif;
    tileContigRoutine put = img->put.contig;
    uint16 orientation;
    uint32 row, y, nrow;
    u_char* buf;
    uint32 rowsperstrip;
    uint32 imagewidth = img->width;
    tsize_t scanline;
    int32 fromskew, toskew;

    buf = (u_char*) _TIFFmalloc(TIFFStripSize(tif));
    if (buf == 0) {
      TIFFError(TIFFFileName(tif), "No space for strip buffer");
      return (0);
    }
    y = setorientation(img, h);
    orientation = img->orientation;
    toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? w+w : w-w);
    TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
    scanline = TIFFScanlineSize(tif);
    fromskew = (w < imagewidth ? imagewidth - w : 0);
    for (row = 0; row < h; row += rowsperstrip) {
      nrow = (row + rowsperstrip > h ? h - row : rowsperstrip);
      if (TIFFReadEncodedStrip(tif,
                                 TIFFComputeStrip(tif,row+img->row_offset, 0),
                                 buf, nrow*scanline) < 0
            && img->stoponerr)
            break;
      (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf);
      y += (orientation == ORIENTATION_TOPLEFT ?
          -(int32) nrow : (int32) nrow);
    }
    _TIFFfree(buf);
    return (1);
}

/*
 * Get a strip-organized image with
 *     SamplesPerPixel > 1
 *     PlanarConfiguration separated
 * We assume that all such images are RGB.
 */
static int
gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
{
    TIFF* tif = img->tif;
    tileSeparateRoutine put = img->put.separate;
    uint16 orientation;
    u_char *buf;
    u_char *r, *g, *b, *a;
    uint32 row, y, nrow;
    tsize_t scanline;
    uint32 rowsperstrip, offset_row;
    uint32 imagewidth = img->width;
    tsize_t stripsize;
    int32 fromskew, toskew;
    int alpha = img->alpha;

    stripsize = TIFFStripSize(tif);
    r = buf = (u_char *)_TIFFmalloc(4*stripsize);
    if (buf == 0) {
      TIFFError(TIFFFileName(tif), "No space for tile buffer");
      return (0);
    }
    g = r + stripsize;
    b = g + stripsize;
    a = b + stripsize;
    if (!alpha)
      memset(a, 0xff, stripsize);
    y = setorientation(img, h);
    orientation = img->orientation;
    toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? w+w : w-w);
    TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
    scanline = TIFFScanlineSize(tif);
    fromskew = (w < imagewidth ? imagewidth - w : 0);
    for (row = 0; row < h; row += rowsperstrip) {
      nrow = (row + rowsperstrip > h ? h - row : rowsperstrip);
        offset_row = row + img->row_offset;
      if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
          r, nrow*scanline) < 0 && img->stoponerr)
          break;
      if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
          g, nrow*scanline) < 0 && img->stoponerr)
          break;
      if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
          b, nrow*scanline) < 0 && img->stoponerr)
          break;
      if (alpha &&
          (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 3),
          a, nrow*scanline) < 0 && img->stoponerr))
          break;
      (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, r, g, b, a);
      y += (orientation == ORIENTATION_TOPLEFT ?
          -(int32) nrow : (int32) nrow);
    }
    _TIFFfree(buf);
    return (1);
}

/*
 * The following routines move decoded data returned
 * from the TIFF library into rasters filled with packed
 * ABGR pixels (i.e. suitable for passing to lrecwrite.)
 *
 * The routines have been created according to the most
 * important cases and optimized.  pickTileContigCase and
 * pickTileSeparateCase analyze the parameters and select
 * the appropriate "put" routine to use.
 */
#define     REPEAT8(op) REPEAT4(op); REPEAT4(op)
#define     REPEAT4(op) REPEAT2(op); REPEAT2(op)
#define     REPEAT2(op) op; op
#define     CASE8(x,op)             \
    switch (x) {              \
    case 7: op; case 6: op; case 5: op;   \
    case 4: op; case 3: op; case 2: op;   \
    case 1: op;                     \
    }
#define     CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; }
#define     NOP

#define     UNROLL8(w, op1, op2) {        \
    uint32 _x;                      \
    for (_x = w; _x >= 8; _x -= 8) {      \
      op1;                    \
      REPEAT8(op2);                 \
    }                         \
    if (_x > 0) {             \
      op1;                    \
      CASE8(_x,op2);                \
    }                         \
}
#define     UNROLL4(w, op1, op2) {        \
    uint32 _x;                      \
    for (_x = w; _x >= 4; _x -= 4) {      \
      op1;                    \
      REPEAT4(op2);                 \
    }                         \
    if (_x > 0) {             \
      op1;                    \
      CASE4(_x,op2);                \
    }                         \
}
#define     UNROLL2(w, op1, op2) {        \
    uint32 _x;                      \
    for (_x = w; _x >= 2; _x -= 2) {      \
      op1;                    \
      REPEAT2(op2);                 \
    }                         \
    if (_x) {                       \
      op1;                    \
      op2;                    \
    }                         \
}

#define     SKEW(r,g,b,skew)  { r += skew; g += skew; b += skew; }
#define     SKEW4(r,g,b,a,skew)     { r += skew; g += skew; b += skew; a+= skew; }

#define A1 ((uint32)(0xffL<<24))
#define     PACK(r,g,b) \
      ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
#define     PACK4(r,g,b,a)    \
      ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
#define W2B(v) (((v)>>8)&0xff)
#define     PACKW(r,g,b)      \
      ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
#define     PACKW4(r,g,b,a)   \
      ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))

#define     DECLAREContigPutFunc(name) \
static void LINKAGEMODE name(\
    TIFFRGBAImage* img, \
    uint32* cp, \
    uint32 x, uint32 y, \
    uint32 w, uint32 h, \
    int32 fromskew, int32 toskew, \
    u_char* pp \
)

/*
 * 8-bit palette => colormap/RGB
 */
DECLAREContigPutFunc(put8bitcmaptile)
{
    uint32** PALmap = img->PALmap;

    (void) x; (void) y;
    while (h-- > 0) {
      UNROLL8(w, NOP, *cp++ = PALmap[*pp++][0]);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 4-bit palette => colormap/RGB
 */
DECLAREContigPutFunc(put4bitcmaptile)
{
    uint32** PALmap = img->PALmap;

    (void) x; (void) y;
    fromskew /= 2;
    while (h-- > 0) {
      uint32* bw;
      UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 2-bit palette => colormap/RGB
 */
DECLAREContigPutFunc(put2bitcmaptile)
{
    uint32** PALmap = img->PALmap;

    (void) x; (void) y;
    fromskew /= 4;
    while (h-- > 0) {
      uint32* bw;
      UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 1-bit palette => colormap/RGB
 */
DECLAREContigPutFunc(put1bitcmaptile)
{
    uint32** PALmap = img->PALmap;

    (void) x; (void) y;
    fromskew /= 8;
    while (h-- > 0) {
      uint32* bw;
      UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 8-bit greyscale => colormap/RGB
 */
DECLAREContigPutFunc(putgreytile)
{
    uint32** BWmap = img->BWmap;

    (void) y;
    while (h-- > 0) {
      for (x = w; x-- > 0;)
          *cp++ = BWmap[*pp++][0];
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 1-bit bilevel => colormap/RGB
 */
DECLAREContigPutFunc(put1bitbwtile)
{
    uint32** BWmap = img->BWmap;

    (void) x; (void) y;
    fromskew /= 8;
    while (h-- > 0) {
      uint32* bw;
      UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 2-bit greyscale => colormap/RGB
 */
DECLAREContigPutFunc(put2bitbwtile)
{
    uint32** BWmap = img->BWmap;

    (void) x; (void) y;
    fromskew /= 4;
    while (h-- > 0) {
      uint32* bw;
      UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 4-bit greyscale => colormap/RGB
 */
DECLAREContigPutFunc(put4bitbwtile)
{
    uint32** BWmap = img->BWmap;

    (void) x; (void) y;
    fromskew /= 2;
    while (h-- > 0) {
      uint32* bw;
      UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 8-bit packed samples, no Map => RGB
 */
DECLAREContigPutFunc(putRGBcontig8bittile)
{
    int samplesperpixel = img->samplesperpixel;

    (void) x; (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      UNROLL8(w, NOP,
          *cp++ = PACK(pp[0], pp[1], pp[2]);
          pp += samplesperpixel);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 8-bit packed samples, w/ Map => RGB
 */
DECLAREContigPutFunc(putRGBcontig8bitMaptile)
{
    TIFFRGBValue* Map = img->Map;
    int samplesperpixel = img->samplesperpixel;

    (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      for (x = w; x-- > 0;) {
          *cp++ = PACK(Map[pp[0]], Map[pp[1]], Map[pp[2]]);
          pp += samplesperpixel;
      }
      pp += fromskew;
      cp += toskew;
    }
}

/*
 * 8-bit packed samples => RGBA w/ associated alpha
 * (known to have Map == NULL)
 */
DECLAREContigPutFunc(putRGBAAcontig8bittile)
{
    int samplesperpixel = img->samplesperpixel;

    (void) x; (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      UNROLL8(w, NOP,
          *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
          pp += samplesperpixel);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 8-bit packed samples => RGBA w/ unassociated alpha
 * (known to have Map == NULL)
 */
DECLAREContigPutFunc(putRGBUAcontig8bittile)
{
    int samplesperpixel = img->samplesperpixel;

    (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      uint32 r, g, b, a;
      for (x = w; x-- > 0;) {
          a = pp[3];
          r = (pp[0] * a) / 255;
          g = (pp[1] * a) / 255;
          b = (pp[2] * a) / 255;
          *cp++ = PACK4(r,g,b,a);
          pp += samplesperpixel;
      }
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 16-bit packed samples => RGB
 */
DECLAREContigPutFunc(putRGBcontig16bittile)
{
    int samplesperpixel = img->samplesperpixel;
    uint16 *wp = (uint16 *)pp;

    (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      for (x = w; x-- > 0;) {
          *cp++ = PACKW(wp[0], wp[1], wp[2]);
          wp += samplesperpixel;
      }
      cp += toskew;
      wp += fromskew;
    }
}

/*
 * 16-bit packed samples => RGBA w/ associated alpha
 * (known to have Map == NULL)
 */
DECLAREContigPutFunc(putRGBAAcontig16bittile)
{
    int samplesperpixel = img->samplesperpixel;
    uint16 *wp = (uint16 *)pp;

    (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      for (x = w; x-- > 0;) {
          *cp++ = PACKW4(wp[0], wp[1], wp[2], wp[3]);
          wp += samplesperpixel;
      }
      cp += toskew;
      wp += fromskew;
    }
}

/*
 * 16-bit packed samples => RGBA w/ unassociated alpha
 * (known to have Map == NULL)
 */
DECLAREContigPutFunc(putRGBUAcontig16bittile)
{
    int samplesperpixel = img->samplesperpixel;
    uint16 *wp = (uint16 *)pp;

    (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      uint32 r,g,b,a;
      /*
       * We shift alpha down four bits just in case unsigned
       * arithmetic doesn't handle the full range.
       * We still have plenty of accuracy, since the output is 8 bits.
       * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff)
       * Since we want r*a * 0xff for eight bit output,
       * we divide by (0xffff * 0xfff) / 0xff == 0x10eff.
       */
      for (x = w; x-- > 0;) {
          a = wp[3] >> 4;
          r = (wp[0] * a) / 0x10eff;
          g = (wp[1] * a) / 0x10eff;
          b = (wp[2] * a) / 0x10eff;
          *cp++ = PACK4(r,g,b,a);
          wp += samplesperpixel;
      }
      cp += toskew;
      wp += fromskew;
    }
}

/*
 * 8-bit packed CMYK samples w/o Map => RGB
 *
 * NB: The conversion of CMYK->RGB is *very* crude.
 */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
{
    int samplesperpixel = img->samplesperpixel;
    uint16 r, g, b, k;

    (void) x; (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      UNROLL8(w, NOP,
          k = 255 - pp[3];
          r = (k*(255-pp[0]))/255;
          g = (k*(255-pp[1]))/255;
          b = (k*(255-pp[2]))/255;
          *cp++ = PACK(r, g, b);
          pp += samplesperpixel);
      cp += toskew;
      pp += fromskew;
    }
}

/*
 * 8-bit packed CMYK samples w/Map => RGB
 *
 * NB: The conversion of CMYK->RGB is *very* crude.
 */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
{
    int samplesperpixel = img->samplesperpixel;
    TIFFRGBValue* Map = img->Map;
    uint16 r, g, b, k;

    (void) y;
    fromskew *= samplesperpixel;
    while (h-- > 0) {
      for (x = w; x-- > 0;) {
          k = 255 - pp[3];
          r = (k*(255-pp[0]))/255;
          g = (k*(255-pp[1]))/255;
          b = (k*(255-pp[2]))/255;
          *cp++ = PACK(Map[r], Map[g], Map[b]);
          pp += samplesperpixel;
      }
      pp += fromskew;
      cp += toskew;
    }
}

#define     DECLARESepPutFunc(name) \
static void LINKAGEMODE name(\
    TIFFRGBAImage* img,\
    uint32* cp,\
    uint32 x, uint32 y, \
    uint32 w, uint32 h,\
    int32 fromskew, int32 toskew,\
    u_char* r, u_char* g, u_char* b, u_char* a\
)

/*
 * 8-bit unpacked samples => RGB
 */
DECLARESepPutFunc(putRGBseparate8bittile)
{
    (void) img; (void) x; (void) y; (void) a;
    while (h-- > 0) {
      UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
      SKEW(r, g, b, fromskew);
      cp += toskew;
    }
}

/*
 * 8-bit unpacked samples => RGB
 */
DECLARESepPutFunc(putRGBseparate8bitMaptile)
{
    TIFFRGBValue* Map = img->Map;

    (void) y; (void) a;
    while (h-- > 0) {
      for (x = w; x > 0; x--)
          *cp++ = PACK(Map[*r++], Map[*g++], Map[*b++]);
      SKEW(r, g, b, fromskew);
      cp += toskew;
    }
}

/*
 * 8-bit unpacked samples => RGBA w/ associated alpha
 */
DECLARESepPutFunc(putRGBAAseparate8bittile)
{
    (void) img; (void) x; (void) y;
    while (h-- > 0) {
      UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
      SKEW4(r, g, b, a, fromskew);
      cp += toskew;
    }
}

/*
 * 8-bit unpacked samples => RGBA w/ unassociated alpha
 */
DECLARESepPutFunc(putRGBUAseparate8bittile)
{
    (void) img; (void) y;
    while (h-- > 0) {
      uint32 rv, gv, bv, av;
      for (x = w; x-- > 0;) {
          av = *a++;
          rv = (*r++ * av) / 255;
          gv = (*g++ * av) / 255;
          bv = (*b++ * av) / 255;
          *cp++ = PACK4(rv,gv,bv,av);
      }
      SKEW4(r, g, b, a, fromskew);
      cp += toskew;
    }
}

/*
 * 16-bit unpacked samples => RGB
 */
DECLARESepPutFunc(putRGBseparate16bittile)
{
    uint16 *wr = (uint16*) r;
    uint16 *wg = (uint16*) g;
    uint16 *wb = (uint16*) b;

    (void) img; (void) y; (void) a;
    while (h-- > 0) {
      for (x = 0; x < w; x++)
          *cp++ = PACKW(*wr++, *wg++, *wb++);
      SKEW(wr, wg, wb, fromskew);
      cp += toskew;
    }
}

/*
 * 16-bit unpacked samples => RGBA w/ associated alpha
 */
DECLARESepPutFunc(putRGBAAseparate16bittile)
{
    uint16 *wr = (uint16*) r;
    uint16 *wg = (uint16*) g;
    uint16 *wb = (uint16*) b;
    uint16 *wa = (uint16*) a;

    (void) img; (void) y;
    while (h-- > 0) {
      for (x = 0; x < w; x++)
          *cp++ = PACKW4(*wr++, *wg++, *wb++, *wa++);
      SKEW4(wr, wg, wb, wa, fromskew);
      cp += toskew;
    }
}

/*
 * 16-bit unpacked samples => RGBA w/ unassociated alpha
 */
DECLARESepPutFunc(putRGBUAseparate16bittile)
{
    uint16 *wr = (uint16*) r;
    uint16 *wg = (uint16*) g;
    uint16 *wb = (uint16*) b;
    uint16 *wa = (uint16*) a;

    (void) img; (void) y;
    while (h-- > 0) {
      uint32 r,g,b,a;
      /*
       * We shift alpha down four bits just in case unsigned
       * arithmetic doesn't handle the full range.
       * We still have plenty of accuracy, since the output is 8 bits.
       * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff)
       * Since we want r*a * 0xff for eight bit output,
       * we divide by (0xffff * 0xfff) / 0xff == 0x10eff.
       */
      for (x = w; x-- > 0;) {
          a = *wa++ >> 4;
          r = (*wr++ * a) / 0x10eff;
          g = (*wg++ * a) / 0x10eff;
          b = (*wb++ * a) / 0x10eff;
          *cp++ = PACK4(r,g,b,a);
      }
      SKEW4(wr, wg, wb, wa, fromskew);
      cp += toskew;
    }
}

/*
 * YCbCr -> RGB conversion and packing routines.  The colorspace
 * conversion algorithm comes from the IJG v5a code; see below
 * for more information on how it works.
 */

#define     YCbCrtoRGB(dst, yc) {                                 \
    int Y = (yc);                                     \
    dst = PACK(                                             \
      clamptab[Y+Crrtab[Cr]],                               \
      clamptab[Y + (int)((Cbgtab[Cb]+Crgtab[Cr])>>16)],           \
      clamptab[Y+Cbbtab[Cb]]);                              \
}
#define     YCbCrSetup                                      \
    TIFFYCbCrToRGB* ycbcr = img->ycbcr;                           \
    int* Crrtab = ycbcr->Cr_r_tab;                          \
    int* Cbbtab = ycbcr->Cb_b_tab;                          \
    int32* Crgtab = ycbcr->Cr_g_tab;                              \
    int32* Cbgtab = ycbcr->Cb_g_tab;                              \
    TIFFRGBValue* clamptab = ycbcr->clamptab

/*
 * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
{
    YCbCrSetup;
    uint32* cp1 = cp+w+toskew;
    uint32* cp2 = cp1+w+toskew;
    uint32* cp3 = cp2+w+toskew;
    int32 incr = 3*w+4*toskew;

    (void) y;
    /* XXX adjust fromskew */
    for (; h >= 4; h -= 4) {
      x = w>>2;
      do {
          int Cb = pp[16];
          int Cr = pp[17];

          YCbCrtoRGB(cp [0], pp[ 0]);
          YCbCrtoRGB(cp [1], pp[ 1]);
          YCbCrtoRGB(cp [2], pp[ 2]);
          YCbCrtoRGB(cp [3], pp[ 3]);
          YCbCrtoRGB(cp1[0], pp[ 4]);
          YCbCrtoRGB(cp1[1], pp[ 5]);
          YCbCrtoRGB(cp1[2], pp[ 6]);
          YCbCrtoRGB(cp1[3], pp[ 7]);
          YCbCrtoRGB(cp2[0], pp[ 8]);
          YCbCrtoRGB(cp2[1], pp[ 9]);
          YCbCrtoRGB(cp2[2], pp[10]);
          YCbCrtoRGB(cp2[3], pp[11]);
          YCbCrtoRGB(cp3[0], pp[12]);
          YCbCrtoRGB(cp3[1], pp[13]);
          YCbCrtoRGB(cp3[2], pp[14]);
          YCbCrtoRGB(cp3[3], pp[15]);

          cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
          pp += 18;
      } while (--x);
      cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
      pp += fromskew;
    }
}

/*
 * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
{
    YCbCrSetup;
    uint32* cp1 = cp+w+toskew;
    int32 incr = 2*toskew+w;

    (void) y;
    /* XXX adjust fromskew */
    for (; h >= 2; h -= 2) {
      x = w>>2;
      do {
          int Cb = pp[8];
          int Cr = pp[9];

          YCbCrtoRGB(cp [0], pp[0]);
          YCbCrtoRGB(cp [1], pp[1]);
          YCbCrtoRGB(cp [2], pp[2]);
          YCbCrtoRGB(cp [3], pp[3]);
          YCbCrtoRGB(cp1[0], pp[4]);
          YCbCrtoRGB(cp1[1], pp[5]);
          YCbCrtoRGB(cp1[2], pp[6]);
          YCbCrtoRGB(cp1[3], pp[7]);

          cp += 4, cp1 += 4;
          pp += 10;
      } while (--x);
      cp += incr, cp1 += incr;
      pp += fromskew;
    }
}

/*
 * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
{
    YCbCrSetup;

    (void) y;
    /* XXX adjust fromskew */
    do {
      x = w>>2;
      do {
          int Cb = pp[4];
          int Cr = pp[5];

          YCbCrtoRGB(cp [0], pp[0]);
          YCbCrtoRGB(cp [1], pp[1]);
          YCbCrtoRGB(cp [2], pp[2]);
          YCbCrtoRGB(cp [3], pp[3]);

          cp += 4;
          pp += 6;
      } while (--x);
      cp += toskew;
      pp += fromskew;
    } while (--h);
}

/*
 * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
{
    YCbCrSetup;
    uint32* cp1 = cp+w+toskew;
    int32 incr = 2*toskew+w;

    (void) y;
    /* XXX adjust fromskew */
    for (; h >= 2; h -= 2) {
      x = w>>1;
      do {
          int Cb = pp[4];
          int Cr = pp[5];

          YCbCrtoRGB(cp [0], pp[0]);
          YCbCrtoRGB(cp [1], pp[1]);
          YCbCrtoRGB(cp1[0], pp[2]);
          YCbCrtoRGB(cp1[1], pp[3]);

          cp += 2, cp1 += 2;
          pp += 6;
      } while (--x);
      cp += incr, cp1 += incr;
      pp += fromskew;
    }
}

/*
 * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
{
    YCbCrSetup;

    (void) y;
    /* XXX adjust fromskew */
    do {
      x = w>>1;
      do {
          int Cb = pp[2];
          int Cr = pp[3];

          YCbCrtoRGB(cp[0], pp[0]);
          YCbCrtoRGB(cp[1], pp[1]);

          cp += 2;
          pp += 4;
      } while (--x);
      cp += toskew;
      pp += fromskew;
    } while (--h);
}

/*
 * 8-bit packed YCbCr samples w/ no subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
{
    YCbCrSetup;

    (void) y;
    /* XXX adjust fromskew */
    do {
      x = w>>1;
      do {
          int Cb = pp[1];
          int Cr = pp[2];

          YCbCrtoRGB(*cp++, pp[0]);

          pp += 3;
      } while (--x);
      cp += toskew;
      pp += fromskew;
    } while (--h);
}
#undef      YCbCrSetup
#undef      YCbCrtoRGB

#define     LumaRed                 coeffs[0]
#define     LumaGreen         coeffs[1]
#define     LumaBlue          coeffs[2]
#define     SHIFT             16
#define     FIX(x)                  ((int32)((x) * (1L<<SHIFT) + 0.5))
#define     ONE_HALF          ((int32)(1<<(SHIFT-1)))

/*
 * Initialize the YCbCr->RGB conversion tables.  The conversion
 * is done according to the 6.0 spec:
 *
 *    R = Y + Cr*(2 - 2*LumaRed)
 *    B = Y + Cb*(2 - 2*LumaBlue)
 *    G =   Y
 *        - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
 *        - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
 *
 * To avoid floating point arithmetic the fractional constants that
 * come out of the equations are represented as fixed point values
 * in the range 0...2^16.  We also eliminate multiplications by
 * pre-calculating possible values indexed by Cb and Cr (this code
 * assumes conversion is being done for 8-bit samples).
 */
static void
TIFFYCbCrToRGBInit(TIFFYCbCrToRGB* ycbcr, TIFF* tif)
{
    TIFFRGBValue* clamptab;
    float* coeffs;
    int i;

    clamptab = (TIFFRGBValue*)(
      (tidata_t) ycbcr+TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long)));
    _TIFFmemset(clamptab, 0, 256);        /* v < 0 => 0 */
    ycbcr->clamptab = (clamptab += 256);
    for (i = 0; i < 256; i++)
      clamptab[i] = i;
    _TIFFmemset(clamptab+256, 255, 2*256);      /* v > 255 => 255 */
    TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRCOEFFICIENTS, &coeffs);
    _TIFFmemcpy(ycbcr->coeffs, coeffs, 3*sizeof (float));
    { float f1 = 2-2*LumaRed;       int32 D1 = FIX(f1);
      float f2 = LumaRed*f1/LumaGreen;    int32 D2 = -FIX(f2);
      float f3 = 2-2*LumaBlue;            int32 D3 = FIX(f3);
      float f4 = LumaBlue*f3/LumaGreen;   int32 D4 = -FIX(f4);
      int x;

      ycbcr->Cr_r_tab = (int*) (clamptab + 3*256);
      ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
      ycbcr->Cr_g_tab = (int32*) (ycbcr->Cb_b_tab + 256);
      ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
      /*
       * i is the actual input pixel value in the range 0..255
       * Cb and Cr values are in the range -128..127 (actually
       * they are in a range defined by the ReferenceBlackWhite
       * tag) so there is some range shifting to do here when
       * constructing tables indexed by the raw pixel data.
       *
       * XXX handle ReferenceBlackWhite correctly to calculate
       *     Cb/Cr values to use in constructing the tables.
       */
      for (i = 0, x = -128; i < 256; i++, x++) {
        ycbcr->Cr_r_tab[i] = (int)((D1*x + ONE_HALF)>>SHIFT);
        ycbcr->Cb_b_tab[i] = (int)((D3*x + ONE_HALF)>>SHIFT);
        ycbcr->Cr_g_tab[i] = D2*x;
        ycbcr->Cb_g_tab[i] = D4*x + ONE_HALF;
      }
    }
}
#undef      SHIFT
#undef      ONE_HALF
#undef      FIX
#undef      LumaBlue
#undef      LumaGreen
#undef      LumaRed

static tileContigRoutine
initYCbCrConversion(TIFFRGBAImage* img)
{
    uint16 hs, vs;

    if (img->ycbcr == NULL) {
      img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
            TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long))
          + 4*256*sizeof (TIFFRGBValue)
          + 2*256*sizeof (int)
          + 2*256*sizeof (int32)
      );
      if (img->ycbcr == NULL) {
          TIFFError(TIFFFileName(img->tif),
            "No space for YCbCr->RGB conversion state");
          return (NULL);
      }
      TIFFYCbCrToRGBInit(img->ycbcr, img->tif);
    } else {
      float* coeffs;

      TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &coeffs);
      if (_TIFFmemcmp(coeffs, img->ycbcr->coeffs, 3*sizeof (float)) != 0)
          TIFFYCbCrToRGBInit(img->ycbcr, img->tif);
    }
    /*
     * The 6.0 spec says that subsampling must be
     * one of 1, 2, or 4, and that vertical subsampling
     * must always be <= horizontal subsampling; so
     * there are only a few possibilities and we just
     * enumerate the cases.
     */
    TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
    switch ((hs<<4)|vs) {
    case 0x44: return (putcontig8bitYCbCr44tile);
    case 0x42: return (putcontig8bitYCbCr42tile);
    case 0x41: return (putcontig8bitYCbCr41tile);
    case 0x22: return (putcontig8bitYCbCr22tile);
    case 0x21: return (putcontig8bitYCbCr21tile);
    case 0x11: return (putcontig8bitYCbCr11tile);
    }
    return (NULL);
}

/*
 * Greyscale images with less than 8 bits/sample are handled
 * with a table to avoid lots of shifts and masks.  The table
 * is setup so that put*bwtile (below) can retrieve 8/bitspersample
 * pixel values simply by indexing into the table with one
 * number.
 */
static int
makebwmap(TIFFRGBAImage* img)
{
    TIFFRGBValue* Map = img->Map;
    int bitspersample = img->bitspersample;
    int nsamples = 8 / bitspersample;
    int i;
    uint32* p;

    img->BWmap = (uint32**) _TIFFmalloc(
      256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
    if (img->BWmap == NULL) {
      TIFFError(TIFFFileName(img->tif), "No space for B&W mapping table");
      return (0);
    }
    p = (uint32*)(img->BWmap + 256);
    for (i = 0; i < 256; i++) {
      TIFFRGBValue c;
      img->BWmap[i] = p;
      switch (bitspersample) {
#define     GREY(x)     c = Map[x]; *p++ = PACK(c,c,c);
      case 1:
          GREY(i>>7);
          GREY((i>>6)&1);
          GREY((i>>5)&1);
          GREY((i>>4)&1);
          GREY((i>>3)&1);
          GREY((i>>2)&1);
          GREY((i>>1)&1);
          GREY(i&1);
          break;
      case 2:
          GREY(i>>6);
          GREY((i>>4)&3);
          GREY((i>>2)&3);
          GREY(i&3);
          break;
      case 4:
          GREY(i>>4);
          GREY(i&0xf);
          break;
      case 8:
          GREY(i);
          break;
      }
#undef      GREY
    }
    return (1);
}

/*
 * Construct a mapping table to convert from the range
 * of the data samples to [0,255] --for display.  This
 * process also handles inverting B&W images when needed.
 */
static int
setupMap(TIFFRGBAImage* img)
{
    int32 x, range;

    range = (int32)((1L<<img->bitspersample)-1);
    img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
    if (img->Map == NULL) {
      TIFFError(TIFFFileName(img->tif),
          "No space for photometric conversion table");
      return (0);
    }
    if (img->photometric == PHOTOMETRIC_MINISWHITE) {
      for (x = 0; x <= range; x++)
          img->Map[x] = ((range - x) * 255) / range;
    } else {
      for (x = 0; x <= range; x++)
          img->Map[x] = (x * 255) / range;
    }
    if (img->bitspersample <= 8 &&
      (img->photometric == PHOTOMETRIC_MINISBLACK ||
       img->photometric == PHOTOMETRIC_MINISWHITE)) {
      /*
       * Use photometric mapping table to construct
       * unpacking tables for samples <= 8 bits.
       */
      if (!makebwmap(img))
          return (0);
      /* no longer need Map, free it */
      _TIFFfree(img->Map), img->Map = NULL;
    }
    return (1);
}

static int
checkcmap(TIFFRGBAImage* img)
{
    uint16* r = img->redcmap;
    uint16* g = img->greencmap;
    uint16* b = img->bluecmap;
    long n = 1L<<img->bitspersample;

    while (n-- > 0)
      if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
          return (16);
    return (8);
}

static void
cvtcmap(TIFFRGBAImage* img)
{
    uint16* r = img->redcmap;
    uint16* g = img->greencmap;
    uint16* b = img->bluecmap;
    long i;

    for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
#define     CVT(x)            ((uint16)((x)>>8))
      r[i] = CVT(r[i]);
      g[i] = CVT(g[i]);
      b[i] = CVT(b[i]);
#undef      CVT
    }
}

/*
 * Palette images with <= 8 bits/sample are handled
 * with a table to avoid lots of shifts and masks.  The table
 * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
 * pixel values simply by indexing into the table with one
 * number.
 */
static int
makecmap(TIFFRGBAImage* img)
{
    int bitspersample = img->bitspersample;
    int nsamples = 8 / bitspersample;
    uint16* r = img->redcmap;
    uint16* g = img->greencmap;
    uint16* b = img->bluecmap;
    uint32 *p;
    int i;

    img->PALmap = (uint32**) _TIFFmalloc(
      256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
    if (img->PALmap == NULL) {
      TIFFError(TIFFFileName(img->tif), "No space for Palette mapping table");
      return (0);
    }
    p = (uint32*)(img->PALmap + 256);
    for (i = 0; i < 256; i++) {
      TIFFRGBValue c;
      img->PALmap[i] = p;
#define     CMAP(x)     c = x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
      switch (bitspersample) {
      case 1:
          CMAP(i>>7);
          CMAP((i>>6)&1);
          CMAP((i>>5)&1);
          CMAP((i>>4)&1);
          CMAP((i>>3)&1);
          CMAP((i>>2)&1);
          CMAP((i>>1)&1);
          CMAP(i&1);
          break;
      case 2:
          CMAP(i>>6);
          CMAP((i>>4)&3);
          CMAP((i>>2)&3);
          CMAP(i&3);
          break;
      case 4:
          CMAP(i>>4);
          CMAP(i&0xf);
          break;
      case 8:
          CMAP(i);
          break;
      }
#undef CMAP
    }
    return (1);
}

/*
 * Construct any mapping table used
 * by the associated put routine.
 */
static int
buildMap(TIFFRGBAImage* img)
{
    switch (img->photometric) {
    case PHOTOMETRIC_RGB:
    case PHOTOMETRIC_YCBCR:
    case PHOTOMETRIC_SEPARATED:
      if (img->bitspersample == 8)
          break;
      /* fall thru... */
    case PHOTOMETRIC_MINISBLACK:
    case PHOTOMETRIC_MINISWHITE:
      if (!setupMap(img))
          return (0);
      break;
    case PHOTOMETRIC_PALETTE:
      /*
       * Convert 16-bit colormap to 8-bit (unless it looks
       * like an old-style 8-bit colormap).
       */
      if (checkcmap(img) == 16)
          cvtcmap(img);
      else
          TIFFWarning(TIFFFileName(img->tif), "Assuming 8-bit colormap");
      /*
       * Use mapping table and colormap to construct
       * unpacking tables for samples < 8 bits.
       */
      if (img->bitspersample <= 8 && !makecmap(img))
          return (0);
      break;
    }
    return (1);
}

/*
 * Select the appropriate conversion routine for packed data.
 */
static int
pickTileContigCase(TIFFRGBAImage* img)
{
    tileContigRoutine put = 0;

    if (buildMap(img)) {
      switch (img->photometric) {
      case PHOTOMETRIC_RGB:
          switch (img->bitspersample) {
          case 8:
            if (!img->Map) {
                if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
                  put = putRGBAAcontig8bittile;
                else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
                  put = putRGBUAcontig8bittile;
                else
                  put = putRGBcontig8bittile;
            } else
                put = putRGBcontig8bitMaptile;
            break;
          case 16:
            put = putRGBcontig16bittile;
            if (!img->Map) {
                if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
                  put = putRGBAAcontig16bittile;
                else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
                  put = putRGBUAcontig16bittile;
            }
            break;
          }
          break;
      case PHOTOMETRIC_SEPARATED:
          if (img->bitspersample == 8) {
            if (!img->Map)
                put = putRGBcontig8bitCMYKtile;
            else
                put = putRGBcontig8bitCMYKMaptile;
          }
          break;
      case PHOTOMETRIC_PALETTE:
          switch (img->bitspersample) {
          case 8: put = put8bitcmaptile; break;
          case 4: put = put4bitcmaptile; break;
          case 2: put = put2bitcmaptile; break;
          case 1: put = put1bitcmaptile; break;
          }
          break;
      case PHOTOMETRIC_MINISWHITE:
      case PHOTOMETRIC_MINISBLACK:
          switch (img->bitspersample) {
          case 8: put = putgreytile; break;
          case 4: put = put4bitbwtile; break;
          case 2: put = put2bitbwtile; break;
          case 1: put = put1bitbwtile; break;
          }
          break;
      case PHOTOMETRIC_YCBCR:
          if (img->bitspersample == 8)
            put = initYCbCrConversion(img);
          break;
      }
    }
    return ((img->put.contig = put) != 0);
}

/*
 * Select the appropriate conversion routine for unpacked data.
 *
 * NB: we assume that unpacked single channel data is directed
 *     to the "packed routines.
 */
static int
pickTileSeparateCase(TIFFRGBAImage* img)
{
    tileSeparateRoutine put = 0;

    if (buildMap(img)) {
      switch (img->photometric) {
      case PHOTOMETRIC_RGB:
          switch (img->bitspersample) {
          case 8:
            if (!img->Map) {
                if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
                  put = putRGBAAseparate8bittile;
                else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
                  put = putRGBUAseparate8bittile;
                else
                  put = putRGBseparate8bittile;
            } else
                put = putRGBseparate8bitMaptile;
            break;
          case 16:
            put = putRGBseparate16bittile;
            if (!img->Map) {
                if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
                  put = putRGBAAseparate16bittile;
                else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
                  put = putRGBUAseparate16bittile;
            }
            break;
          }
          break;
      }
    }
    return ((img->put.separate = put) != 0);
}

/*
 * Read a whole strip off data from the file, and convert to RGBA form.
 * If this is the last strip, then it will only contain the portion of
 * the strip that is actually within the image space.  The result is
 * organized in bottom to top form.
 */


int
TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )

{
    char    emsg[1024];
    TIFFRGBAImage img;
    int     ok;
    uint32  rowsperstrip, rows_to_read;

    if( TIFFIsTiled( tif ) )
    {
        TIFFError(TIFFFileName(tif),
                  "Can't use TIFFReadRGBAStrip() with tiled file.");
      return (0);
    }

    TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
    if( (row % rowsperstrip) != 0 )
    {
        TIFFError(TIFFFileName(tif),
                "Row passed to TIFFReadRGBAStrip() must be first in a strip.");
      return (0);
    }

    if (TIFFRGBAImageBegin(&img, tif, 0, emsg)) {

        img.row_offset = row;
        img.col_offset = 0;

        if( row + rowsperstrip > img.height )
            rows_to_read = img.height - row;
        else
            rows_to_read = rowsperstrip;

      ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );

      TIFFRGBAImageEnd(&img);
    } else {
      TIFFError(TIFFFileName(tif), emsg);
      ok = 0;
    }

    return (ok);
}

/*
 * Read a whole tile off data from the file, and convert to RGBA form.
 * The returned RGBA data is organized from bottom to top of tile,
 * and may include zeroed areas if the tile extends off the image.
 */

int
TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)

{
    char    emsg[1024];
    TIFFRGBAImage img;
    int     ok;
    uint32  tile_xsize, tile_ysize;
    uint32  read_xsize, read_ysize;
    int           i_row;

    /*
     * Verify that our request is legal - on a tile file, and on a
     * tile boundary.
     */

    if( !TIFFIsTiled( tif ) )
    {
        TIFFError(TIFFFileName(tif),
                  "Can't use TIFFReadRGBATile() with stripped file.");
      return (0);
    }

    TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
    TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
    if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
    {
        TIFFError(TIFFFileName(tif),
                  "Row/col passed to TIFFReadRGBATile() must be top"
                  "left corner of a tile.");
      return (0);
    }

    /*
     * Setup the RGBA reader.
     */

    if ( !TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
      TIFFError(TIFFFileName(tif), emsg);
        return( 0 );
    }

    /*
     * The TIFFRGBAImageGet() function doesn't allow us to get off the
     * edge of the image, even to fill an otherwise valid tile.  So we
     * figure out how much we can read, and fix up the tile buffer to
     * a full tile configuration afterwards.
     */

    if( row + tile_ysize > img.height )
        read_ysize = img.height - row;
    else
        read_ysize = tile_ysize;

    if( col + tile_xsize > img.width )
        read_xsize = img.width - col;
    else
        read_xsize = tile_xsize;

    /*
     * Read the chunk of imagery.
     */

    img.row_offset = row;
    img.col_offset = col;

    ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );

    TIFFRGBAImageEnd(&img);

    /*
     * If our read was incomplete we will need to fix up the tile by
     * shifting the data around as if a full tile of data is being returned.
     *
     * This is all the more complicated because the image is organized in
     * bottom to top format.
     */

    if( read_xsize == tile_xsize && read_ysize == tile_ysize )
        return( ok );

    for( i_row = 0; i_row < read_ysize; i_row++ )
    {
        _TIFFmemcpy( raster + (tile_ysize - i_row - 1) * tile_xsize,
                     raster + (read_ysize - i_row - 1) * read_xsize,
                     read_xsize * sizeof(uint32) );
        _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
                     0, sizeof(uint32) * (tile_xsize - read_xsize) );
    }

    for( i_row = read_ysize; i_row < tile_ysize; i_row++ )
    {
        _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
                     0, sizeof(uint32) * tile_xsize );
    }

    return (ok);
}

Generated by  Doxygen 1.6.0   Back to index